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1. INTRODUCTION

Many engineers have been focusing their attention in the past few

years on the problems encountered when a random force is applied to

structural materials. The advent of these problems was brought about

by the development of jet engines for aircraft and rocket engines for

spacecraft. It was found that the panels in the fuselage and wing

structures of aircraft in the vicinity of the jet engines fail due to

the random acoustical excitation they receive from the jet engine noise.

A similar situation exists in the neighborhood of the nozzles on rockets

engines. The basic reason this random excitation is so damaging is that

it excites materials at all frequencies over the frequency range

(bandwidth) of its power spectrum. If a natural frequency oflthe

structure happens to exist in the bandwidth and the structure itself

dissipates little or no energy (light damping), the resulting amplitude

of vibration would become very large and failure should occur in a

reasonably short time.

This type of response occurs in lightly damped systems because the

system behaves as a narrow-band filter and absorbs energy primarily at

its own natural frequency; this absorption of energy is in phase with

the vibration of the system, causing the amplitude of vibration to in-

crease with each successive cycle of vibration. The amplitude of a

system with zero damping will tend to increase without bound; the am-

plitude of systems with damping will tend to increase until it reaches

the limiting amplitude defined by the parameters of the system, the

limiting amplitude being larger with the lesser amount of damping.

The stringer reinforced plate shown in Figure 1 is a configuration

commonly found in aircraft, spaceships, and many other structures. The

plate and each of the inner panel areas are square with the outer edges

of the plate assumed to be fixed. The stringer reinforcements are an

integral part of the plate, the panel areas being created by milling

the plate into its present configuration from one sheet of metal

(aluminum). The fixed edge condition was imposed by bolting an angle

r
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iron frame to the outer four inches of the plate and connecting the top

and bottom frames with plates bolted into the frames. The latter

plates were used to support the system during testing.

The problem is: given this plate and this excitation (Figure 2),

predict the response of the plate. The problem is solved in two parts:

a mathematical model using a lumped parameter analysis; and an experi-

mental test on the particular plate shown in Figure 1.

It was decided that the form of the response should be the re-

sponse power spectral density and the maximum root mean square dis-

placements of the plate. The plate was excited by a large exponential

horn measuring twelve feet square at its mouth and producing a wave

front which was approximately plane with normal incidence to the plate

and perfectly correlated in the horizontal and vertical directions.

The random excitation was band limited from 25 to 500 Hz. This band-

width contains all the frequencies of interest for this particular prob-

lem and allows the attaining of a much higher root mean square power

level than that attained by a wider bandwidth. A root mean square

square power level of approximately 149 decibels referenced to .0002

bars was attained by the horn. Figure 2 shows the power spectral den-

sity of the acoustical force exciting the plate.
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2. PREVIOUS WORK

The purpose of this section is to give credit to the authors whose

work was utilized as a guide in performing this investigation. The two

common methods of analysis in this type of investigation are the normal

mode lumped parameter analysis and the transfer matrix technique, pre-

viously known as the Holzer-Myklestad method. Although extensive lit-

erature related to this problem was surveyed, the scope of this section

is limited to the particular investigations which are similar to this

investigation. These particular investigations are also selected be-

cause of their practicality.

The normal mode approach in the study of the response of contin-

uous structures under random loading began with the work by Van Lear and

Uhlenbeck (1) in 1931. Recent authors using this approach includes

Miles in 1954 (14), Lyon in 1956 (2), Eringen in 1957 (3), Thompson and

Barton in 1957 (4), Powell in 1958 (5), Samuels in 1958 (6), Dyer in

1958, 1959 (7), (8), Bagdanoff and Goldberg in 1960 (9), Lin in 1963-

1965 (10), (11), (26), Barnoski in 1967 (12), and Seireg in 1969 (13).

The work of Miles (14), Powell (5), and Lin (10), (11), (26) is

the basis for the lumped parameter analysis performed by Barnoski (12)

and Seireg (13). The particular method developed by Seireg is most

like the analysis used in this investigation.

In the initial work in this area, Miles (14) assumed that the re-

sponse of a panel is dominated by one (fundamental) mode. Consequently,

he also assumed that the system can be represented by an oscillator with

a single degree of freedom., His assumption leads to a simple expression

for the output power spectrum of the panel response:

xx(W) = IH (w) 12 FF() (2-1)

where FF is the input power spectrum and H is the transfer func-

tion. Substituting this expression into the standard mean square value

equation,



x = S xx(W) dw (2-2)
0o

one obtains the mean square value of the response. Miles considered

only an excitation pressure which is uniformly distributed over the

panel in order that the assumption of fundamental-mode predominancy

would hold. If the pressure is not uniformly distributed, a more gen-

eral investigation is warranted. The work by Miles, later extended by

Powell (5), was eventually utilized to evaluate the response of air-

craft panels to jet-engine noise. In many respects this work is simi-

lar to the analysis used in this investigation.

Powell (5) extended Miles' work to consider several modes of vi-

bration and obtained a general expression for the output power spectrum:

(xx) = IHr(w)l . IH(W) FFo()A2 (2-3)
r s

where. OFFo = excitation power spectrum at a reference point

A = overall area of the structure

J = joint acceptance of the pressure field
rs T

rT) a (rF(w;rr' : ) (r) drdr' (2-4)
rsT A2 . FF '' r 

where.. r and a = normal mode- amplitudes

r,r = coordinates of a point on the structure

drdr' = differential area

RFF = autocorrelation function of the excitation pressure

T = difference in response lags for two modes, r and s
when excited at frequency w.

Lin (10) (11) (26) later simplified Powell's results for the case

of light damping and well separated resonant frequencies to

6 



xx(w) = Z IHr()) FO (w)A 2rr() i (2-5)
r 0

Lin (11) eventually derived what is considered the most general form of

the normal mode approach to determining the response of a linear conti-

nuous structure subjected to a random pressure. He also proved that

the general results (Equation 2-3) arrived at by Powell can be deduced

from a more general equation (2-6) by assuming the excitation pressure

field to be weakly stationary.

xx(rlr2;'W) ~A ?iFF(Pl,P2;W) H(rl,pl;w) H*(r2 ,p2 ;u)dPldp2 j(2-6)

where rl,r2 = coordinates of the response point

1,P2 = coordinates of the excitation pressure

H* = complex conjugate of H

Barnoski (12) applied the results determined by Lin (11) with the

help of work by Crandall (28) and Roberts (29) to predict the mean

square displacements and velocity response of rectangular plates sub-

jected to a random excitation. Barnoski developed two dimensionless

coefficients, I and II, whose values, ranging from zero to one, are to

be multiplied respectively by the results of Lin for the root mean

square displacement and velocity. These coefficients are determined by

the particular damping ratio (Z) of the system and the ratio of the cut-

off frequency (upper bandwidth limit) (wc) of the input spectrum to the

natural frequency of the system (wn). For damping ratios (Z) less than

0.01, both the dimensionless coefficients I and II are nearly zero; for

w /w somewhat less than one. They rapidly approach unity as w /w ap-cn c n
proaches infinity. Barnoski's results converge to the results given by

Lin (11) for an excitation spectrum with a cut-off frequency which en-

compasses the natural frequencies of the system.

Seireg and Howard (30) developed an approximate normal mode method

of analysis which permits any linear non-conservative system to be

7



solved by superposition of uncoupled coordinates. The normal mode

method does not generally apply to damped systems. Only a particular

class of damped systems, originally defined by Rayleigh (31) and later

generalized by Caughey (32), can be uncoupled by the same transfor-

formation which uncouples conservative systems. Foss (33) and O'Kelly

(34) later described the complex transformations that are required to

uncouple certain damped systems. These results, although technically

uncoupled, are so complicated that the primary objective of using normal

modes is defeated.

Seireg and Howard (30) developed an approximate method which allows

any lumped parameter linear system subjected to an arbitrary forcing

function to be approximately represented by equations uncoupled by the

same transformation which uncouple the conservative systems. Their

method utilizes experimental response curves determined by exciting the

systems with pure tones. These response curves are utilized to deter-

mine the damping ratios (Z ik) as described by Bruel and Kjaer (17). The

amplitude ratios at each natural frequency are used to approximate the

eigenvectors of the system. Knowing the relation between the eigen-

vectors (Vik) and the modal participation factors (ak) to be by defi-

nation,

Z Vik ak = 1(2-7)

the system of simultaneous equations may be solved for the modal partic-

ipation factors ak. The single-resonance assumption that the nonreso-

nant components of the damping are to have negligible effect at the

natural frequencies, produce what are called the fictitious damping

ratios (fik). They are defined by,

5 Vika (2-8)
tik 

=

Zik

These fictitious damping ratios are used to evaluate the fictitious dis-

placements in each mode of vibration. The summation of the independent

modal displacements produces the total displacement at each point on the

plate. The fictitious damping ratios reduce to modal damping ratios

8



7

when the damping of the system is small. This method produces re-

sulting displacements which vary from the expected values by less than

ten per cent when the damping ratio is less than 0.10.

The method of analysis utilized in this investigation is similar

to that used by Seireg and Howard (30). The essential difference is

that the damping ratios in this investigation are sufficiently small

(Figure 21) to justify utilizing modal damping ratios rather than fic-

titious damping ratios. In this investigation, the eigenvectors,

eigenvalues, and modal participation factors are determined analytically

rather than by the use of the experimental data.

The method of transfer matrices described by Lin (11), (26),

McDaniel and Donaldson (27) is also a method of analysis for plates sub-

jected to a random excitation. Dokanish (35) later expanded the trans-

fer matrix method by combining it with the finite element technique.

The general technique for applying this method of analysis is to assume

the plate is composed of several rows of panels; each row of panels is

assumed to be separated by inflexible stringers. The panels in each

row are separated by flexible stringers which are perpendicular to the

inflexible stringers. The response of this system is assumed to be

harmonic in the direction normal to the inflexible stringers and to be

random in the direction parallel to the inflexible stringer. Each panel

may then be subdivided into strips which have their edges parallel to

the stringers. The stiffness and mass matrices for each strip are then

calculated. The equilibrium equations are determined to obtain the

relation between the right and left edges of each strip. Requirements

of displacement continuity and force equilibrium at the edges common to

two adjacent strips gives the transfer matrix relation. Successive ma-

trix multiplication finally relates the variables of the left and right

boundary of each panel and eventually of the entire plate. Boundary

conditions require the determinant of a portion of the overall transfer

matrix to vanish at the natural frequencies of the system. By substi-

tuting values of frequency until the determinant vanishes, the natural

frequencies are determined. The method also produces the mode shapes

9 l



of the system.

Another method of analyzing the random response of plates in the

utilization of an analog computer to model and solve the problem.

Murphy and Swift (37) and Barnoski (12) are some of the authors who

have utilized this method of analysis. Through the use of analog com-

puters and control system techniques, a deterministic function is gen-

erated which has the correct statistical properties of the random

excitation. This function is used to solve in a deterministic fashion

for the response, which is described statistically in terms of dis-

placement of stress.

For this method of analysis the kinetic and strain energies are

calculated and the equations of motion are derived by using Lagrange's

equation. A gaussian noise generator supplies the "white noise" which

is passed through additional shaping filters to produce voltates which

have the statistical representation of the forcing function. The dif-

ferential equations are then solved by the analog computer.

The selected investigations discussed in this section indicate that

a great deal of work has been done on this problem. The primary devel-

opment in this area has been in the realm of analysis. Although more

work needs to be done analytically, the primary concern now is to de-

velop techniques applicable to practical structures. With all the

analytical work accomplished, very little experimental work has been

performed to verify the results of the analyses. A spectacular example

of the additional work needed in this area is the unexpected fatigue

cracks which developed on the Air Force's huge C5-A transport aircraft.

These cracks are believed to be caused by the same type of random ex-

citation which is the motivation of this investigation. Although this

problem originated with modern flight vehicle structures excited by jet

or rocket engine noise, it has been found to apply to many other sys-

tems.

10
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3. ANALYTICAL EQUATIONS OF MOTION

This section covers a derivation for the mean square response of

the panel structure by using an approximate normal-mode method for a

damped, lumped parameter system. A scaled drawing of the actual plate

,is shown in Figure 1. This structure is represented by the lumped mass

system shown in Figure 3. The displacements of the masses, x(I), I =

1, 2, 3, ..., 14, are perpendicular to the planelof the plate and|

referenced to inertial coordinates. Energy expressions for the system

are:l

N 2
Kinetic energy = T = % m. x.

i=l 1 1

N N
Potential energy = U = i Z Z K.. x. x.

i=l j=l J i 3

N N
Dissipated energy = D = Cij x.i x.j

i=l j=l 1 3

N
Work done = W = Z fi x.

i=l 1

Lagrange's equation in normalized coordinates for a multidegree of

freedom system can be written

d (T aT +au aD aw
dt kk ak Ik 6 (3-1)

where the coordinate transformation is defined as

N

Xi k Vik Y13k=l
kl(3-2)

N

x = Vik Xk
1k=l1

11 



ml = .000791 6 = .000791

m
2
= .003022 m7 = .000791

m
3
= .003022 m8 = .000791

m4 = .003022 m
9
= .000791

m5 = .003022 m1 0 = .000791

mll = .000791

m12 = .000791

m13 = .000791

m14 = .595238

FIGURE 3: Lumped Mass Model of Test Plate
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This transformation is necessary in order to uncouple the equations

of motion for the system. It is shown in Appendix A that the Vikt s

necessary to perform this transformation are the eigenvectors which de-

scribe the normal modes of the free, undamped vibration system. The

eigenvalues associated with each of the eigenvectors are the undamped

natural frequencies of the system and can be obtained along with the

eigenvectors by solving the differential equation of motion for the free

undamped vibration system.

Substitution of the transformations into the work and energy terms,

and utilization of the orthogonality relationship given below,

N

m
i
V Vi V.

i=l

0, for k # m

Z mi Vk ,for k = m
1 Vik'

0,

N N
Z Z K.. Vi Vj =
i=l j=l 1j ik jm

i=1

for k i m

N
Z K.. V

j=1 j
ik Vjk' for k = m

with the frequency equation for the undamped free vibration system,

NN N N

i- Z K.. V V = m V2 w
i=l j=l ij ik jk i=l I ik

and making the substitutions,

N N

i - K V M
k

W
k

i=1 j=l ii ik jk =k Wk

(3-3)

13
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Mk = Z mi Vik
i=l

N N

i=l j=l j
Kk = i-l j-l ij ik jk (3-3a) /.

N N

C . z C.. Vik Vjk
k i=l jl ij k jk

one obtains:

NN N N
T = Z m Vik Vk % =k k _

i=l k=1 k=l

N NN N N 2

U = 2 Z Z Z K. Vi Vjk = 2 Mk W 
k=l i=l j=l k=l

N N N N N N

D = ½ Z Z C.. Vik Vjk X
k
Xk = i z C. V jk

k=l i=l j=l j k=l i=l j=l ij

By substitution of these relations into Lagrange's equation, the

following set of equations are obtained:

2 Ck FkXk + Wk Xk + (3-4)

where

N

Fk Z f i Vik(3-4a)k i-l I i(3-4a)

Equation 3-4 is converted to the form which represents uniform

14
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viscous damping by using Equation 3-3.

2 Ck 2 Fk
Xk + W k Xk + KkY k Mk (35)

If Ck/K
k

is constant for each value of Kk in Equation 3-5, the

system has uniform viscous damping. This is a good approximation for

systems in which the damping is an inherent property of the spring

material (13). Since the physical structure utilized in the experi-

mental work was constructed of aluminum and the inherent damping of the

aluminum was the only damping considered, the above assumption of Ck/Kk

equal to a constant is valid for this system. It is shown below that

this constant Ck/Kk equals 2Zk/wk, where Zk is the modal damping ratio.

By definition'

Cck = 2Kk Mk , critical damping coefficient

Ck

k Cck

WkJ Kk

Substituting into the above expression, one obtains

C
k

ZkCC
k

Kk 2

Ck 2Zk IFk k

Kk 2
Wk Mk

Ck 2Zk %k

k15

15



Ck 2Z
k

Kk Wk

Equation 3-5 with the above substitutions now becomes

~~2 Fk ( F
Xk +Wk Xk + 2Zk W = k (3-6)

The solution of Equation 3-6 may be determined by the well-known

method of convolution (13) to be

Xk I d o Fk(T) exp [- k Wd (t-T)] sin d(t-T) dT (3-7)

where

wd = k 1 - Zk

Ck= Zk/jl- Zk

t = time

T = t
2

- t
2 1

Since a function to adequately represent the forcing function Fk(T)

cannot be written explicitly, a probabilistic representation must be

utilized. This representation essentially transforms the deterministic

problem from an explicit forcing function and a resulting definite value

for the response to the probabilistic problem with the input forcing

function given as a power spectral density and the output, as the mean

square value of the response.

It is assumed that the excitation is at least weakly stationary,

which defines its expected value (mean value) to be a constant and its

16!



autocorrelation function to depend only on T = t2 - t . The auto-

correlation, Rxx, is defined by

Rxx(t1, t2) = E[x(tl) x(t2 )]

where the E denotes expected value.

E[x] = I_ x fx(x) dx

where f (x) is the probability density function. In equation form, the
x

above definition of a weakly stationary force F is

ELF(t) = constant

RFF(tl' t2) = RFF (t2 - tl) = RFF(T)

From the statistical analysis of the actual random excitation that

was used as an input to the structure, it was found that the excitation

was indeed weakly stationary (Section 6). The response to a weakly sta-

tionary excitation is nonstationary for small values of time (t). The

response becomes weakly stationary after the system has been exposed to

the weakly stationary excitation for a sufficiently long period of time.

Lin (11) states, for example, that a sufficiently long period of time is

four natural periods if the damping ratio Z = 0.1, or about twenty nat-

ural periods if Z = 0.02. These times are required for the effects of

configuration' of the system at t = 0 and the resultant transient re-

sponse to die out. The resulting weakly stationary response is anal-

ogous to the steady-state response in the deterministic vibration

theory.

The power spectral density (Dxx) is defined as the Fourier trans-

form of the autocorrelation function (Rxx) of the weakly stationary

random variable (x(t))

xx __ 1 (w) Rxx () exp (-iWT)dT
2rrJ 17xx

17



I

The inversion formula can also be written as

Rxx () J= _xx(W) exp (-iwT)dW

where, i, as used in the exponential term here and in the appropriate

equations to follow, is equal to

The significance of this expression is apparent where T is allowed

to approach zero for large values of time (t).

R (0) = _ xx(W) dw

R(O) = E[x(tl), x(tl)] = E[x2 (tj)]= x2 (t)

x (t) = S xx (w)dw (3-8) 

This last equation equates the mean-square response to the integral

of the response spectral density. From the work done by Lin (11), the

relationship between the spectral densities of the excitation and the

response is obtained.

Xx(W) = FF(W) IH(w ) 12 (3-9)

Substituting Equation 3-9 into Equation 3-8, one obtains

x (t)= J - 2IH(w)Id \ (3-10)

The analysis will be accomplished in two parts: one, assuming

that the power spectral density is a constant; and two, assuming that it

is not a constant. The results of these two parts will be compared in

Section 6.

If the spectral density of the excitation changes very slowly in

the vicinity of the natural frequency of the system, it can be assumed

that this spectral density is a constant for all values of frequency

and that the value of the constant is the value of the spectral density

18



evaluated at the natural frequency. This implies that FF(w) is a con-

stant and is equal to FF(Wk).

x(t) = ~FF(Wk) J*_ IH(w) 2 dw
The transfer function H(w) is determined by exciting the system

with a sinusoidial forcing function f and arranging the resulting re-

sponse x in the form

xi(t) = H(w) fi(t)

Utilizing Equation 3-6

Xk + 2Zk Wk + wk Xk M

where

F
k
= Fko exp (iwt)

and Xk is assumed to be

X
k
= Xko exp (iWt)

Xk = Xko exp (iwt) (iw)

Xk = Xko exp (iwt) (iw) = Xko exp (iwt)

Equation 3-6 then becomes

-Xko 
w
2 exp (iwt) + 2Zkwk ko(iw) exp (iht)

+ Wk Xo exp (iwt) = kexp (iht)

2 2 Fko
Xko (Wk - W + 2i Zk w

k
W) =

Fko

Xko Mk[W2 - w2 + 2i Zk Wk w]

19



Fko exp (iwt) Fk

k - 2i Zk Wk ]k + 2iZk k W]

Substituting Xk into Equation 3-2 and substituting Equation 3-3a

and 3-4a into the resulting equation, one obtains

N

ik i jk
i j=

N mV2 [W2 2

j=-1

1
N
Z mj Vj
j=1 J Jk

N

[2 - 2 +
[k

2i Zk wkw]

P A. V
j jk

2i Zk k w]

1
ak = -N 

E m. v.
j=l J j k

(3-11)

N N N
Z fj = Z P A V = P A V = P
j=l jk j=l Vjk jk= Vkj=1 j 1 j I

where P =

A. =
3

uniform pressure applied to all masses

area of each mass

N

Ak = Z A. V
j= Vjk

N ak Vik k
x. = Z p

k=l k2 w2 + 2i Z
k
W
k
W

[Wk Z Wk W

20 1
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k=l

N

z k=l
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It can now be seen that H(w) is determined to be

N

H(w) = Z
k=l

ak Vik Ak

w 1 -2 - + 'i Zk w I
W k

2 2 -2
ak Vik Ak

[ (1 - w2)
Wk

+ (2Zk ) 2

Substituting fH(w) 2 into Equation 3-10, one obtains the

equation for the steady-state mean-square response at the ith

for a lumped parameter system.

2
ak

w4[(l

N o

i.(t) = 7 -l ' FF(3. k=l

2 -2
Vik Ak

W22

2)
Wk

+ (2Z w2)2]

(k

If the power spectral density can be assumed to be a constant with

respect to frequency, Equation 3-12 becomes

N CO

i(t ) = l FF -1k=1

2 2 -2
ak Vik k

k- 2) +wk
Wk

integral in Equation 3-13 may be evaluated by the theorem of

as given in references (11) and (15). (See Appendix B)

2 2 -2 2 2 -2
ak V k Aku dw ak Vik Ak

fC( % 22 (2k )2] 2Z 3
IU~ k

C

N

IH(w) 12 = Z
k=l 1

general

location

dw (3-12)

The

residues

dw (3-13)

2Zk w 2](kw ]
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Considering only the physically realizable part of the

spectrum, the above equation becomes

2 2 -2 2 2 -2
E' 22 ak V dw k Ak

h 4( ge (2zf o )2 ] - 4Zcm 

The integrated form of Equation 3-13 becomes

2 2-2
2 = la V4ik Ak

'Ri(t) = Z mFF(w) 3i ~-
k=l 4Z

4k k

frequency

(3-14)

Utilizing Equation 3-14, one can obtain the steady state mean-

square response for a system excited by a nearly constant random force.

The random force in this case must be nearly constant in the neighbor-

hood of the natural frequencies. If this latter condition is not met

by the system being analyzed, Equation 3-12 must be utilized. In

Section 4, the physical plate will be modeled in a lumped parameter for-

mat. The appropriate lumped parameter will be calculated and substi-

tuted into Equations 3-12 and 3-14 respectively. These two outputs will

be compared with the intention of determining the error involved in as-

suming a constant power spectrum in the neighborhood of the natural

frequencies for a particular input power spectrum.
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4. LUMPED PARAMETER MODEL OF THE PLATE

In this section, the particular plate shown in Figure 1 will be

modeled as a lumped parameter system. The physical quantities such as

mass, damping, and stiffness will be lumped at fourteen different lo-

cations on the plate (Figure 3). The methods used to apportion values

for the lumped parameters will subsequently be discussed. Equations

3-12 and 3-14 will be evaluated using the derived values for the

lumped parameters will subsequently be discussed. Equations 3-12 and

3-14 will be evaluated using the derived values for the lumped para-

meters. The final results will be given in terms of the power spectral

density of the output response and the root mean square maximum dis-

placements at the fourteen locations and will be calculated by the two

analytical methods discussed in Section 3.

The experimental plate was square for fabrication convenience; how-

ever, the analysis is general for any plate configuration. Since the

plate was square, it would have been possible to model only one-eighth

of the plate and maintain geometrical symmetry and obtain the deflec-

tions of the remainder of the plate through geometrical considerations;

however, the small variations in the dimensions of the physical system

(plate plus frame) from the dimensions which would make the system per-

fectly symmetrical caused some concern as to how the response may be

affected, and accordingly, it was decided to model the entire plate and

structure.

The number and location of the lumped masses were arbitrary, but

once selected, became fixed and the distribution of the total mass to

each of the selected lumped mass points was determined by the rule of

pleasing proportions. This rule of pleasing proportions is based on

knowledge obtained from numerous lumped parameter investigations of

beam vibrations. One investigation (21) indicated that a beam which is

proportioned such that one-half the total mass is lumped at the center

and one-quarter at each of the ends, will produce analytical results

which compare very favorably with the predicted values for the natural
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frequencies of the beam considering the beam as a continuous structure.

The central area of the plate is partitioned into thirteen masses and a

fourteenth mass is used to represent the outer edge of the plate and

the fixed frame (Figure 3). Each of the nine panels (Figure 1) is pro-

portioned such that half the mass of each panel is lumped at the panel's

center and one-eighth of the mass lumped at each of the four outer edges

of each panel. The masses lumped at the center of each panel are the

ones shown in Figure 3 with the associated numbers: 1, 6, 7, 8, 9, 10,

11, 12, 13. The lumped masses numbered 2, 3, 4, and 5 in Figure 3 are

comprised of the mass of the adjoining stringers and the edge mass of

the adjoining panels. The edge mass of the panels which are in direct

contact with the outer frame are lumped with the mass of the frame as

the mass numbered 14 in Figure 3.

The influence coefficient matrix, which is the inverse of the

stiffness matrix, for the fourteen mass system is determined by two

methods. Analytically, the influence coefficients are determined by

using Weaver's structural analysis programs named FR1 and FR3 (16).

Experimentally, the influence coefficients are determined by measuring

deflections of the lumped mass points with a dial indicator when loads

are applied at the various mass points. Loads ranging from five to

thirty pounds when required in increments of five pounds were applied at

each point, and deflections at all mass points were measured for each of

the applied loads (Table 1).| The value of the influence coefficients

are then determined by dividing the measured value of the deflections in

inches by the applied load in pounds force. An average value over all

the applied loads is then calculated for each lumped mass point. For

TABLE 2a
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TABLE 1 !

Root Mean Square Amplitudes of Vibration (Inches)

Experimental

.01418

.00824

.01097

.01059

.00915

*

Error
Between Exp.
and Eq 3-12 \. -

23.2%

41.0%

19.1%

21.7%

39.1%

*Experimental Data not available

25 !

Mass
Points

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Equation
3-14

.0340

.0227

.0255

.0250

.0248

.0130

.0128

.0134

.0130

.0057

.0062

.0056

.0059

.0000

Equation
3-12 1,

.0175

.0117

.0131

.0129

.0128

.0067

.0067

.0069

.0067

.0029

.0031

.0029

.0030

.0000



example, shown in Table 2a precedinglare typical values of load and de-

flection at the center of the plate. These values are then used to

fill the 14 x 14 matrix of influence coefficients. See Table 2.

In order to utilize FRl and FR3 in determining the analytical co-

efficients, the plate is represented by a dense network of beams. These

beams are represented in Figure 3 by the symbol for a spring (-W)'

The results indicate, as was expected, that the more dense the network

of beams used to represent the plate, the better the correlation between

the analytical and the experimentally measured values of the influence

coefficients. Table 3 shows the analytically determined influence co-

efficients using the network of beams shown in Figure 3. This network

of beams represents the most dense network of beams as applied to the

solution of this problem, and Table 3 represents the best analytical

approximation to the experimental data in Table 2. The effect on the

natural frequencies of the system is the most important factor to be

considered when analyzing the difference between the two sets of influ-

ence coefficients in Table 2 and Table 3. A comparison of the natural

frequencies of the system when calculated by using the experimental and

the analytical values of the influence coefficients is shown in Table 4.

The final results presented in this investigation are the results deter-

mined by utilizing the experimentally measured values of the influence

coefficients.

As mentioned in Section 3, the damping associated with this system

is assumed to be an inherent property of the spring material, aluminum.

In this investigation, the total damping of the system was measured in-

directly from forced vibration traces and assumed to conform to the re-

strictions imposed upon the system in Section 3, particularly modal

damping. This assumption proved to be valid for the particular system

being modeled because of the relatively low values which were measured

for the damping ratios (Figure 21). Authors Lin (11) and Seireg (13)

give 0.04 as a sufficiently low value for the damping ratio in order

order that this assumption be valid. Since all measured values of the

damping ratios in the frequency range of interest are below the 0.04
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TABLE 4 i

NATURAL FREQUENCIES(HZ) DETERMINED BY USING

EXPERIMENTAL..AND ANALYTICAL INFLUENCE COEFFICIENTS
__________________________________________________

EXPERIMENTAL

36e7620544

60,7374878

IOU.591385

111e057571

138,671692

253.736816

256.553955

280 063965

293.056885

298,084961

31 0320068

3130791260

322, 51758

4380847412

ANALYTICAL

36*7590637

5908366852

1060387955

1060861526

140s428879

255,540680

262 554687

268 186768

279,673C96

287-891357

30lo 17578

3050689697

3110158936

331D779785

291



value (Figure 21), the assumption is substantiated.

The damping ratios were determined from the typical experimental

response curves shown in Figures 17, 18, 19, and 20. Actually, 19

curves were utilized in the investigation. The damping ratios were cal-

culated at each natural frequency for each location on the plate. The

curves showing the results of these calculations, Figure 21, indicate

that the damping ratio is a function of frequency and not a strong func-

tion of location on the plate as noted by the relatively close grouping

of the data points at each frequency. The particular values for the

damping ratios (Z) at each frequency are determined by the functional

relationship,

Z= f
2f

where f is the damped natural frequency or the value of the frequency

associated with each major peak in the power spectral density plots.

Af is defined as the half power bandwidth or as the frequency range

spanned by the response curve at the point on the curve which has half

the power as does the peak value at the damped natural frequency (12),

(17).

The particular shape of the excitation power spectral density with

regard to the location in the frequency spectrum of the natural fre-

quencies of the system will determine which equation, 3-12 or 3-14,

should be used to calculate the root mean square response of the system

(11). If the excitation power spectral density is constant over the

range of frequencies spanned by the natural frequencies of the system,

Equation 3-14 can be used; if the excitation power spectral density is

anything other than a constant over the frequency range of interest,

Equation 3-12 should be used to obtain best results. For camparison

purposes, the excitation shown in Figure 2 is used as the input for both

Equations 3-12 and 3-14. The resulting root mean square displacements

are shown in Table 1, along with the corresponding values measured ex-

perimentally. In the course of evaluating Equation 3-12 the necessary

30
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data for plotting the analytical power spectral density was calculated

as described in the computer solution of the problem and eventually

plotted (Figures 4 through 16).
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FIGURE 4.
THEORETICAL RESPONSE POWER SPECTRRL

DENSITY RT LUMPED MASS NUMBER 1

In

.-.

"-

Lbu

,_,CD~

aQ

-I

O. D0
I

1 32 t



FIGURE 5.
THEORETICAL RESPONSE POWER SPECTRAL

DENSITY AT LUMPED MASS NUMBER 2
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FIGURE 6.
THEORETICRL RESPONSE POWER SPECTRRL
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FIGURE .7..
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FIGURE 8.
THEORETICAL RESPONSE POWER SPECTRRL
DENSITY AT LUMPED MASS NUMBER 5

D

b
-:

LJ

z
.. 'C

a-

0. 0 E. 00 .00 6. 00 0. 00
FREQUENCY (HZ) ,10'

36



FIGURE 9.
THEORETICAL RESPONSE POWER SPECTRAL
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FIGURE 11.
THEORETICAL RESPONSE POWER SPECTRIL
DENSITY AT LUMPED MASS NUMBER 8
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FIGURE 12.
THEORETICAL RESPONSE POWER SPECTRRL

DENSITY RT LUMPED MASS NUMBER 9
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FIGURE 14.
THEORETICRL RESPONSE POWER SPECTRRL
OENSITY RT LUMPEO MRSS NUMBER 11
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FIGURE 16.
THEORETICRL RESPONSE POWER SPECTRRL
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FIGURE 17.
EXPERIMENTRL RESPONSE POWER SPECTRARL
DENSITY CORRESPONDING TO MRSS 1
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FIGURE 18.
EXPERIMENTAL RESPONSE POWER SPECTRAL
OENSITY CORRESPONDING TO MASS 2
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FIGURE 20.
EXPEBIMENTAL RESPONSE POWER SPECTRRL
OENSITY CORRESPONDING TO MRSS 8
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5. COMPUTER EVALUATION OF THE EQUATIONS OF MOTION

In this section, the computer program which was developed to per-

form the calculations necessary for evaluating Equations 3-12 and 3-14

will be discussed. (This program is listed in Appendix B.) The neces-

sary inputs to this program are: (1) the mass matrix, (2) the influence

coefficient matrix, (3) the modal damping ratio matrix, (4) the power

spectral density of the excitation and (5) the operational parameters

(Figure 22). With these inputs, the computer will calculate the stiff-

ness matrix, the natural frequencies of the structure, the mode shapes

of vibration, the modal participation factors, the power spectral density

of the response, and the root mean square displacements of the system.

The program is also capable of generating the necessary data for plotting

the power spectral density of both the excitation and the response.

Before the progression of calculations performed by the computer

program and the methods employed to perform these calculations are dis-

cussed in detail, a very basic breakdown of the program is given. The

basic format on which the program is structured can be seen from these

major steps: (1) the input of the appropriate data, (2) the calculation

of necessary parameters, (3) substitution of the necessary parameters

into Equations 3-12 and 3-14, and (4) printing the desired results.

These four divisions are indicated in Figure 21 by the corresponding

Roman numerals. Steps in the flow diagram which are located between

the horizontal dash lines are the ones associated with each of the four

major steps numbered between these lines.

The first major division of the program is devoted to reading the

appropriate data necessary for calculating the parameters of the problem.

The flow diagram (Figure 22) lists the particular items which are read

into the computer program. The particular order and format for inputing

the data is shown in the program listing in Appendix C. The first set

of six 'A' format read statements are the common titles which will be

printed on the power spectral density plots. Particular titles will be

read in the same D0 Loops performing the particular calculations. The
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FIGURE 22: FLOW DIAGRAM

READ

Titles, Cases, Dimension, Degrees of freedom, Mass
Influence Coefficients, Damping Ratios, Excitation

I

CALL DECOMP

Real Sysmetrem
Prn ix

YES

CALL INVERT

Combine Mass and
Stiffness Matrix

CALL JACOB 

Transform Eigenvalues
And Eigenvectors into

Real System

Print Eigenvalues
And Eigenvectors

Calculate Modal Participation
Factors by Equation (III-11)

CALL GRAND
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next read statement identifies the number of data sets (K) and the actual

dimension size of the influence coefficient matrix (NA). The number of

degrees of freedom (N) is read in next. The mass (AMASS), area of exci-

tation for each mass (FA), the damping ratio (Z), the constant value of

the excitation power spectral density (W), the variable values of the

excitation power spectral density (WI), and the influence coefficients

(A) are inputed in this same order. The mass, being read in, in units

of pounds force, is converted to the proper inch-pound-seconds system of

units by dividing it by 386.4. The values of WI are also converted back
-5

to their actual values by multiplying by 10 . If the excitation power

spectral density is not a constant, one inputs a zero for W in the data

deck. If the excitation power spectral density is a constant, one in-

puts a minus one for WI in the data deck.

The second major division in the program begins by calling subrou-

tine DECOMP. This subroutine decomposes the influence coefficient matrix

into an upper tri-diagonal matrix and tests the matrix to determine if

it is a real symmetric matrix (18). If it is not a real symmetric matrix,

the next step cannot be performed and the program is sent to stop. If

it is a real symmetric matrix, the program then calls subroutine INVERT,

which inverts the influence coefficient matrix and produces the stiffness

matrix. The stiffness matrix (A) is then transformed by the inverse of

the mass matrix in such a fashion that the resulting matrix (A) is still

symmetrical. This matrix is now in the proper form for substitution in-

to subroutine JACOB. This subroutine calculates the eigenvalues and

eigenvectors of the system by using the Jacobi Method for real symmetric

matrices (20). The resulting eigenvalues are converted into units of

hertz and the eigenvectors are transformed back into the real system by

multiplying them by the inverse square root of the mass matrix. The

total area over which the excitation is applied and the generalized area

are calculated. The mass matrix and the eigenvectors are then used to

calculate the modal participation factors as described by Equation 3-11.

At this point, the displacements of the plate are referenced to the

fixed frame (fourteenth mass) by subtracting the eigenvector component -
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associated with the fourteenth mass in all the modes of vibration,

[V(14,J)], from the other eigenvector components.

It can be seen in Figure 2 that the excitation power spectral den-

sity is not a constant in the particular case being investigated, but

evaluation of Equation 3-14 was performed for comparison purposes by ap-

proximating the curve in Figure 2 with an average value. Subroutine

GRAND is called to integrate the curve in Figure 2 from 6 to 500 Hz.

The average value of the curve is then obtained by dividing the inte-

grated value by 495, which is the total frequency range.

The third major division of the program, the evaluation of Equations

3-12 and 3-14 is initiated by testing the value of W. If W is equal to

zero, W is set equal to EXIC which is the average value calculated by

subroutine GRAND. At this point, the other quantities necessary for

substitution into Equation 3-14 have already been stored in the computer,

and determination of the root mean square displacements (x) is merely a

matter of performing the required mathematical operations. The factor

2f is used to convert the frequency units from Hz (cycles per second) to

radians per second. The constant 165.5 determined by calibration proce-

dures discussed in Section 5, effectively converts the excitation from

volts to pounds force. The output (x) is now printed as the response

displacement of each lumped mass in inches.

A test is performed on WI to determine if the evaluation of Equation

3-12 is necessary in this case. If this evaluation is not necessary,

(WI = -1) control is shifted to the next test, (L = K), which determines

whether or not any more cases are to be calculated. If no more cases

are to be evaluated the program stops. If more cases are to be eval-

uated, the control is sent to the beginning of the program, and the cycle

is started again by reading new data for the next case. If WI is not

equal to a minus one, the sequence of calculations continues. The power

spectral density of the response is calculated using Equation 3-9, or

equivalently the integrand of equation 3-12. The calculation is per-

formed in 1-Hz increments over the frequency range of 6 to 500 Hz. The

response power spectral density (WO) is multiplied by the same conversion
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factors (2r and 165.5) as applied in the displacement calculations of

Equation 3-14. The resulting power spectral density of the response is

now in terms of pounds force squared per hertz.

The fourth major division of the program is begun by printing the

response power spectral density (WO). Subroutine GRAND, which utilizes

a Simpson's rule integration technique, is called to integrate WO over

its range of frequencies to produce the mean square values of the dis-

placements. The square roots of these values produce the root mean

square values of the displacements (XI) in inches; XI is then printed.

The particular titles for each data set are read in as 'A' format data.

The subroutine WEBAL is called twice to plot the necessary power spectral

density curves. The first time WEBAL is called, the power spectral den-

sity of the response at each lumped mass point (WO) is plotted (Figures

4 through 16). The second time WEBAL is called, it plots the power spec-

tral density of the excitation (WI). See Figure 2. The number of cases

is tested (L = K). If more cases are to be calculated the program re-

turns to the appropriate read statement and the cycle of calculations is

again performed. If all the cases have been completed the program stops.
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6. EXPERIMENTAL TEST

The object of the experimental test was a determination of the root

mean square values of the displacements and the response power spectral

density of a plate (Figure 1) subjected to the random acoustical pres-

sure (Figure 2). The experimental tests were performed at Mississippi

Test Facility and financially supported by NASA through the Division of

Engineering Research at Louisiana State University.

The particular shape of this plate was chosen because its shape is

a simple geometric form and generally found in areas where the acous-

tical noise may be at a sufficiently high level as to cause damage to

the surrounding structures. As noted in Section 2, other investigations

in this area were made on the assumption that the stringers were suffi-

ciently stiff in at least one direction as to give the adjoining edge

of the panels a fixed boundary condition in that direction. See Lin

(26) and McDaniel and Donaldson (27). This particular plate has no such

restrictions and differs from other plates subjected to a random excit-

ation in that it resists analysis by the method of transfer matrices (26),

(27). The only fixed condition imposed on this plate are the fixed outer

edges.

The plate is constructed of sheet aluminum alloy 6061-T6 with a

modulus of elasticity of lx107 lb-ft/in
2

and a shear modulus of 4x106

lb-ft/in2. (These properties are standard handbook values.) The maxi-

mum thickness of the plate is 0.25 inch at the boundaries and stringers.

The panel thickness is 0.125 inch. The plate was constructed from a solid

sheet of aluminum with the panel areas formed by milling away the unwanted

metal. The radius of curvature at the corners where the panels and the

stringers intersect is no longer than 3/16 of an inch, and the surface

finish is specified as a standard 63 smooth. All tolerances were held

to ± 1/64 of an inch. The plate is shown in the foreground of Figure 23

fixed on all four edges by a 4xl/4 angle iron frame which is bolted to

the edge of the plate by 36 half inch bolts. The top and bottom frames

are also joined by two 1/2 inch thick plates which were attached on
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opposite edges of the plate and used to support the entire system of frame

and plate during the experimental test.

The plate was clamped before the strain gages were attached. Biaxial

and rosette type strain gages were mounted on the surface of the plate

primarily around the centrally located panel. Two strain gages were also

mounted on the frame. Figure 26 shows the location and alignment of the

strain gages. The strain gages were calibrated in the laboratory with the

use of the equipment shown in Figure 23. The dynamic part of the cali-

bration procedure was performed in the Mobile Instrumentation Unit; this

trailer is shown in Figure 24. The equipment inside the Mobile Instrumen-

tation Unit is shown in Figure 25. The laboratory calibration was per-

formed by attaching weights to the particular points designated as lumped

mass points on the plate and measuring the strains and deflections at all

points of interest. See Table 6 for results of the strain measurements

and Table 2 for results of deflection measurements. It is noted that

strain gages are not located at all fourteen points designated as lumped

mass points in the analysis. This caused some concern until calibration

was completed on the five points shown in Table 1 which coincided both

experimentally and analytically. The five calibrated points produced

the same conversion constants and gave credence to the assumption that

these conversion constants were uniform for all points on the plate as

shown in the calibration calculations which follow.

Two conversion constants are necessary; one to convert the volts

representing the excitation power to pounds force, and a second factor to

convert the root mean square volts to displacement in inches.

The conversion of volts to pounds force is accomplished through the

set of linear equations.

AR = A(AV), C - B(AR), and L = Cc, where

AR = Change in resistance (ohms)

AV = Change in voltage

C = Strain in inches/inch (6-1)

A,B, and C are constants to be determined through calibration procedures.

The desired relationship is determined by combining the above equations to
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FIGURE 26 |

Location and Direction of Strain Gages

on the Frame and Center Panel of the Plate
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produce L = ABC (AV), where L is the load in pounds force and AV is the

change in voltage in volts.

The calibration constant A is determined by placing 50,000 and

220,000 hom calibration resistors (IR) in parallel with the 120 ohm (R G )

strain gages. The AR is calculated from the equation (36),

RGRp
R = R G - (6-2)

R=G -RG+RP 1(6-2)

in which the second term on the right hand side is the effective value of

resistance created by the two resistors R
G

and Rp acting in paralle. The

two values of AR5 = .29 ohms and AR20 = .07 ohms. See Appendix D for

sample calculations. AR5 is determined by using the 50,000 ohm calibra-

tion resistor in Equation (6-2), and AR20 is determined by using the

220,000 ohm calibration resistor. Values of voltage were recorded on a

digital volt meter by switching the calibration resistors in and out of

the circuit until the change in voltage (AV) was stabilized. (See Table

5.) An average value for AV was then determined. This procedure was

repeated for both of the calibration resistors at each strain gage loca-

tion. The calibration constant A is then calculated by the equation,

A =-AR/AV. The constant A is expected to be uniform for all the strain

gages since the initial value of resistance is the same for all gages.

The experimental data substantiates this statement. A, equal to 0.274,

represents an average value calculated for all strain gages shown in

Figure 27. (See Appendix D for sample calculation.)

The calibration constant B is determined for the equation which de-

fines the Gage Factor (F) in terms of resistance (R), change in resistance

(AR), and strain (C).

F= R/Ror s = AR
¢ RF

comparing the above equation with s = BAR, B is seen to be defined as

1/RF; R and F are given by the strain gage manufacturers (Micro-Measurement,

Inc.) to be R = 120.8 ohms and F - 1.98. B is then calculated to be

equal to .00418.
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I TABLE 5 |
Change in Voltage (AV) for Each Calibration

Resistor at all Strain Gage Locations

Initial
D. C. Voltage

-.047
-.020
-.013
-.036
-.020
-.050
-.057
-.054

-.065
-.066
-.068
-.070
-.074
-.072
-.065
-.063
-.063
-.066

-.254
-.240
-.43
-.41
-.40
-.36
-.34
-.33
-.121
-.121

+.120
+.111
+.104
+ .090
+.070
+.077
+.072

Final
D. C. Voltage

+1.000
+1.030
+1.037
+0.2050
+0.1987
+0.190
+0.187
+0.190

+0.997
+0.996
+0.995
+0.993
+0.988
+0.989
+0.175
+0.178
+0.178
+0.175

120.8 Ohms in
Parallel with

50,000
it

I,

220,000
If

it

It

11

50,000
!1

If

it

It

it

220,000
it

11

if

50,000
It

IF

i1

!!

220,000
it

i,

it

50,000

+0.698
+0.741
+0.62
+0.63
+0.65
-0.13
-0.100
-0.099
+0.118
+0.933

+1.162
+1.160
+1.148
+0.313
+0.298
+0.301
+0.306

50,000
If

If

220,000
If

it

i,

Ohms
if

1,

Ohms
'I

'F

if

if

Ohms
1f

I1

if

If

If

Ohms
.,

If

f,

Ohms
i,

if

If

i,

Ohms
It

i,

11

Ohms

Ohms
11

1,

Ohms
It

1,

It

220,000 Ohms
it if

Strain
Gage
Number

1

1

2

2

3

3

4

4

5 +.010
+.009

+0.251
+0.250
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TABLE 5 j(Continued)

Initial
D. Co Voltage

Final
D. C. Voltage

120.8 Ohms in
Parallel with

50,000 Ohms
,. t1

50,000

220,000
i220

220,000
it

It

it

50,000

2201,000
!i

i1

220,000
4I

If

50,000

I1

50,000
If

4i

I4

It

220,000
It

If

220,000

11

50,000
it

Ohms
II

Ohms
44

Ohms

it

Ohms

Ohms
41

It

Ohms
it

it

Ohms
;i

it

it

Ohms
if

it

It

It

Ohms
if

It

Ohms
il

It

Ohms
It

Strain
Gage
Number

5 +.009
+.010

6 +.064
+.068
+.068
+.070

+1.067
+1.069

+1.145
+1.150
+0.314
+0.319

7

8

+.156
+.153
+.152
+.147

.000
.. 000
.000

- .016
- .018

9 .000
-.008
-.003
.000

+.029
+.050
+.065

10

+0.400
+0.398
+1.220
+1.218

+1.050
+1.060
+0,227
+0.225
+0.222

+0.227
+0.264
+0.260
+1.070
+1.075
+1.095
+1.108

+1.036
+1.040
+1.072
+1.077
+1. 100
+0.284
+0.284
+0.283

+0.564
+0.567
+0.570
+1.260
+1.270

-.030
+.002
+.008
+.015
+.035
+.035
+.040
+.037

11 +.368
+.365
+.367
+ .370
+. 378
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TABLE 5 (Continued) t

Initial
Tn . IlT.-no

+.125
+.126
+.126
+.130

+.025
+.024
+.027
+.024

+.114
+.120
+.120
+.122

+o068
+.070
+.074
+.076
+ .078
+.079

+. 110
+.117
+.128
+.110

-.001
-.028
-.024
-.008

+.021
+.010
+.016
+.009

+.048
+.045
+.045
+ o .043

Final
D. C. Voltage

+1.165
+1.168
+0.360
+0.363

+0.26'2
+0,261
+1.071
+1.070

+1.184
+1.183
+0.364
40.363

+0.312
+0.312
+0.319
+0.318
+1.139
+1.140

+1.160
+1.165
+0.365
+0.355

+0.237
+0.236
+1.053
+10053

+1.070
+1.072
+0.240
+0.243

-0.316
-0.316
+1.117
+10120

120.8 Ohms in
Parallel with

50,000
1I

220,000
220,000

220,000
,,

50,000
It

50,000
It

200,000

200,000
IT

If

50,000

220,000
it

220,000
IT

50,000
r ,

50,000

220,000
I,

220,000

50,000
if

Strain
Gage

W. .L_

12

13

14

15

Ohms
It

Ohms

Ohms

Ohms
i,

Ohms
,i

Ohms
,,

Ohms
it

Ohms
it

i,

,i

11

iT

Ohms
i,

Ohms
,i

Ohms
i,

Ohms
It

Ohms
,I

Ohms
it

Ohms
,,

Ohms
I,

16

17

18

19
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TABLE 6

Values of Strain in Micro-Inches per Inch for
Various Loads at Selected Strain Gage Locations

Strain
Gage Loads at Corresponding
Number Strain Gage Number (Pounds Force)

0 1 5 10 15 20 25 30

1 10,000 9,993 9,966 9,935 9,905 9,876 9,848 9,820

2 10,000 9,993 9,964 9,927 9,890 9,859 9,822 9,790

3 10,000 9,993 9,967 9,937 9,905 9,875 9,840 9,820

5 5,000 4,990 4,954 4,911 4,869 4,832 4,793 4,758

6 5,000 4,991 4,961 4,924 4,889 4,848 4,818 4,785

7 10,000 9,994 9,966 9,929 9,890 9,859 9,824 9,792

8 5,000 4,994 4,965 4,926 4,889 4,856 4,822 4,790

13 5,000 4,988 4,944 4,888 4,834 4,780 4,726 4,674
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The calibration constant C is determined from the data recorded in

Table 6. This data was recorded by loading the plate at the desired points

of interest and recording the change in strain (£) due to the applied loads

(L). The constant C is then calculated by the equation, C = L/ . As noted

previously, strain gages were not set at all lumped mass points. An aver-

age value of the five points was used for all points. (A sample calculation

is shown in Appendix D.) The value for C is determined to be equal to

.144 x 106 . The conversion constant relating load (L) and voltage (AV)

may now be determined by multiplying the three calibration constants A x

B x C. This calculation is performed in Appendix D, the resulting con-

version constant is equal to 165.5. The equation defining the conversion

from volts to pounds force can now be written as L - 165.5 AV.

The second calibration constant, which relates volts to inches, is

obtained by adding another linear equation to the set of three equations

utilized in the above calibration. This equation, 6 = DL, relates de-

flections (6) and the (L) through the conversion factor (D), which is

seen to be the influence coefficients of the system. Solving this latter

equation for L = 6/D and substituting in the above conversion between volts

and pounds force, one obtains = 165.5 DAV. This conversion equation is a

function of location on the plate and will be evaluated for each point at

which both experimental and analytical data is available. (See Table 7.)

The equipment utilized in performing the experimental test is shown

in Figures 23,24,25. Figure 23 shows the plate and frame in the fore-

ground and strain sensing and recording equipment in the background. Figure

25 shows the equipment inside the Mobile Instrumentation Unit which was

used to sense and record nineteen channels of dynamic strain and will be

further described. Figure 24 shows the control center on the right, the

Mobile Instrumentation Unit at right center, the exponential horn with the

plate and frame mounted near its mouth at left center, and the pressurized

air storage vessels on the left.

The strain sensing equipment seen in the background of Figure 23 con-

sists of two Baldwin-Lima-Hamilton Strain Indicators and balancing units,

a Honeywell galvanometer oscillograph, and a Tektronix Memory Oscilloscope.
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TABLE 7 i

Evaluation of 6 = 165.5D AV

AV = Peak
Value of rms 6 = Deflection

Mass D(from table 21) 165.5D Response (Volts) in Inches

1 .00127 .2100 .0675 .01418

2 .00083 .1372 .060 .00824

3 .00102 .1688 .065 .01097

4 .00100 .1655 .064 .01059

5 .00098 .1620 .0565 .00915
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The equipment seen in Figure 25 consists of a bank of signal conditioners

in the upper right hand corner, and a bank of amplifiers in the lower right

center of the figure. A multiplexing unit is located in the lower center

foreground. A nine track Lockheed tape recorder is seen on the table in

the upper left hand corner along with the direct current power source lo-

cated in the left center background. The control center in Figure 24 con-

tains the necessary equipment for operating the exponential horn. Included

in this equipment is a variable frequency signal generator, a bandwidth

limiting noise signal generator, and an amplifier. Switches for con-

trolling the flow of the compressed air from the pressurized air storage

vessels to the vibrator baffles of the horn are also located in the con-

trol center. The exponential horn shown in Figure 24 has a profile which

is described by an exponential function. It was rotated to the position

shown in Figure 24 and the plate was adjusted in the crow's nest in the

position shown such that the plane of the plate and the plane of the mouth

of the horn were parallel. This insured that an acoustical wave impinging

on the plate from the horn would impact the plate with normal incidence.

The radius of curvature of the wave leaving the mouth of the horn is so

much greater than the dimensions of the plate that this wave can be as-

sumed to be plane. A near field test on the acoustical pressure field

impinging on the plate verified this assumption. Figure 32 (a, b, c)

shows the correlation between the amplitude and the phase angle along

three radial lines in the plane of the plate. The four individual curves

represent the four radial distances at which the pressure was recorded.

The radial distances from the center of the plate are 0, 10, 20, and 30

inches. The three radial lines along which these four pressure measure-

ments were recorded are oriented with the horizontal y axis (a), the

vertical z axis (c), and the 45 degree diagonal connecting the corners

of the plate (b). These curves substantiate the assumption that the

acoustical field is uniform over the entire area occupied by the plate.

The curves shown in Figure 32 represent an 80 Hz pure tone. The same

series of test was performed for a 500 Hz pure tone to determine if fre-

quency has an effect on the pressure distribution. The relationship between
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amplitude and phase angles at the various locations of the 500 Hz pressure

field were the same as the 'ones for the 80 Hz pressure field. This sub-

stantiated the assumption that the pressure is uniform over the area oc-

cupied by the plate regardless of its frequency. This statement is inter-

preted to state that a random pressure field emmitted from the horn will

produce a uniform pressure field in the plane occupied by the plate.

The block diagram shown in Figure 27 represents the path followed by

the experimental data from its generation at the plate in the form of

strain to the final results represented by the power spectral density plots

and the maximum root mean square deflections. The plate and horn system

is composed'of the plate instrumented with nineteen strain gages, the

frame, the structure supporting the plate and frame, and the exponential

horn. The'exponential horn generates the random acoustical field which

excites the plate, causing the deflections of the plate to change the

resistance of the strain gages. Each strain gage is wired into a full

Wheatstone bridge circuit located in the signal conditioners. The change

in resistance is converted to an equivalent change in voltage as deter-

mined by the calibration constant. The resulting change in voltage is

directed into amplifiers which increase the voltage from millivolts to

volts (a factor of one thousand). The resulting magnified voltage is

sent into the multiplexing unit along with a one volt calibration signal.

The multiplex system stores the change in voltage on a high frequency

carrier. The five different carrier frequencies used to record the dif-

ferent channels of voltage are 200, 300, 400, 500, and 600 KHz. The data

was then recorded on the odd numbered (1, 3, 5, 7, 9) tracks of a nine track

tape. Five multiplex signals were recorded on each track, except track

number nine which contained three channels of excitation data. The cal-

ibration signal was recorded on each channel before each test for a

period of one minute. The calibration signal was a 1 volt, 80 Hz pure

tone generated from a 155 decibel sound source (See Figure 28).

Figure 28 shows the power level and the time duration of the four

excitations produced by the exponential horn. The figure shows the last

few seconds of the calibration signal starting at time equal zero. The
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signal drops down to the background level of 80 Hz pure tone excitation.

After 45 seconds of 80 Hz excitation, the signal drops down to the noise

floor for 45 seconds. The next 45 seconds of excitation consist of 139

decibels of random excitation having the same frequency spectrum as shown

in Figure 2. After another 45 seconds of noise floor, the output power

of the horn is raised approximately 10 more decibels. The same sequence

of excitation described above is repeated at the higher power levels.

The sequence of excitations is as follows: 80 Hz excitation for 45 seconds

at 151 decibels, 45 seconds of noise floor, and back to the calibration

level. The only excitation used in the data analysis is the 149 decibels

of random excitation for 45 seconds. The other tests were performed only

to check the signal quality generated by the strain gages and the general

behavior of the system.

The analysis of the data consists of printing the raw data and deter-

mining the root mean square value, the amplitude spectrum of the data

(Figure 29), the probability density of the data (Figure 30 and 31), and

the power spectral density of the data (Figures 2, 17, 18, 19, and 20).

Figure 29 is a representative slice of the data recorded by strain

gage number 2. The amplitude spectrum indicates the location of the

natural frequencies in the frequency spectrum and the amount of amplitude

associated with each frequency. The plot of the raw data shows the partic-

ular section of data being analyzed. The root mean square plot shows the

root mean square in volts of the data as a function of time. These root

mean square plots are scanned to locate the maximum root mean square values

of the data. (See AV in Table 7.) These maximum values will be converted

through the use of the calibration constants to the maximum root mean square

deflections of the plate in inches. (See 6 in Table 7.)

Figures 30 and 31 represent the probability density plots of the

response at strain gage number 2 and of the excitation respectively.

Figure 31 represents a nearly perfect Guassian distribution which, as Lin

(11) indicates, determines the excitation to be at least stationary. The

probability density of the response (Figure 30) represents a near perfect

Guassian distribution, and by Lin (11) determines the response to be
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strongly stationary or analogously the steady state condition of the deter-

ministic theory. Lin also states that given an excitation whose probab-

ility density has a Gaussian distribution and a structural system which

is linear, the output response of the system will have a probability

density which has a Gaussian distribution. Figures 30 and 31 verify this

statement and also the assumption made in Section 3 regarding the excita-

tion being at least weakly stationary.

The power spectral density plot of the excitation shown in Figure 2,

along with Figure 31, contains all the information required to completely

define the random excitation. The power spectral density plots of the

response data shown in Figures 17, 18, 19, and 20 contain the necessary

information to completely describe the response. These plots can be used

to determine the natural frequencies of the system and the power stored

at all of these frequencies. Integration of the response power spectral

density curves produces the mean square response of the plate. Using the

square root of this quantity and converting to the proper units, the root

mean square displacements of the plate in inches are obtained. (See 6 in

Table 7.)
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7. COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

The results obtained from the analytical and experimental work des-

cribed in Sections 3 through 6 are compared and discussed in this section.

Plausible explanations are given for the differences between the analytical

and experimental results. The particular results are discussed in terms

of the power spectral density~plots and the root mean square deflections.

The accuracy of approximating this plate with a network of beams is also

discussed.

Figures 4 and 17 represent the analytical and experimental power

spectral densities of the response. t the center of the plate. The general

trend followed by both these curves is in good agreement. The magnitude o'f

the peaks tend to decrease with an increase in frequency in both the ana-

lytical and experimental cases. The frequency (37,Hz) of the first natural

frequency predicted analytically agrees very well with the experimentally

measured'value of 38 Hz. The magnitude of these two peaks also agree

quite well. In this discussion, the peaks in the power spectral density

plots imply a natural frequency exists at that frequency. The peak having

the greatest amount of power is the first fundamental frequency of the

system. The importance of the agreement between experimental and analy-

tical values of magnitude and frequency at the first natural frequency of

the system is realized when one applies this analysis to the solution of

vibration problems. The magnitude and the frequency of the first natural

frequency of a structure is usually the most important information needed

to solve vibration problems associated with the structure. Good agreement

of the analytical and experimental frequency of the last peak (430 Hz) on

the power. spectral density plots is also observed. The magnitude of this

analytical peak is low as compared to the magnitude of the experimental

peak. This trend of low values of magnitude for the analytical peaks is

consistent throughout the entire frequency spectrum with the exception of

the peaks at or near the first natural frequency of 37 Hz. This trend

becomes more pronounced as the frequencies increase. The experimental

and analytical frequencies of the system indicated by the peaks in the
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power spectrum tend to agree very well through the entire frequency range.

The only exception is a peak at 60 Hz in the analytical power spectrum

whose magnitude is twolorders higher than the peak indicated by the first

natural frequency noted above. The trend of the small disagreement be-

tween values of frequency for the peaks, particularly in the midband fre-

quencies from 100 to 400 Hz, is for the analytical frequencies to be higher

than the experimental frequencies. Located at approximately 10 Hz in the

experimental power spectral density plot, a peak is observed which does not

show up on the analytical plot. This discrepancy can be explained by real-

izing also the reason for the shift of natural frequencies to higher values

on the analytical plots. One reason the analytical natural frequencies are

slightly high is because the entire structure supporting the plate and

horn system is not included in the lumped parameter model of the system.

Only the crow's nest, shown in Figure 22 as the platform protruding out

from under the mouth of the exponential horn is included in the modeliof

the system. The remainder of the supporting structure, including the horn

itself, is not accounted for in the analysis. The effect on the natural

frequencies of the system of including the entire structure which supports

the horn and plate would be to shift the lowest analytical natural fre-

quencies to a lower value and essentially leave the higher natural fre-

quency unchanged except for a small overall shift to lower values of

frequency. It is proposed that the value of frequency to which the lowest

frequency would be shifted would coincide with the peak at 10 Hz shown on

the experimental curve. The shift of the other analytical natural fre-

quencies to lower values would tend to bring these values into bett agree-

ment with the experimental values. The peak at 60 Hz which would be shifted

to a lower value would then exist as the only peak on the experimental curve

which does not match with a corresponding peak on the experimental curve.

A possible remedy for correcting this problem is to distribute the mass

in such a manner that more mass is located at the center of the plate.

This modification would have the effect of lowering the magnitude and

frequency of the response near 60 Hz. This idea will be pursued after

a comparison is made of the next two power spectral density plots.
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Figures 5, 18, and 19 are representative of the analytical and the

experimental response power spectral densities of a lumped mass at the

intersection of two stringers on the plate. Both the analytical and

experimental curves possess the same trend which is the decrease in re-

sponse power as the frequencies increase. The only exception to this

trend is a peak on the experimental curve at approximately 430 Hz which

is not predicted on the analytical curve. This indicates that too much

mass is allocated to the lumped mass points in the peripheral area of the

plate near the frame. Allocating less mass to each lumped mass point near

the frame and adding more lumped mass points in this area will cause the

magnitude of the response peaks to increase at the higher frequencies.

This new distribution of the mass toward the center panel area will also

cause the frequency of the lower modes to decrease. If this distribution

of the mass is accomplished in an optimum fashion, the two peaks located

at 37 and 60 Hz would be shifted to match the experimental peaks at 10

and 37 Hz. The general tendency of the analytically determined magnitude

of the peaks, particularly at the higher modes of vibration, to be higher

than the corresponding experimental magnitudes would be rectified. The

analytical peak at 60 Hz can be diminished by placing several more lumped

mass points in the area of the central panel. Inclusion of these mass

points at the center of the stringers which surround the center panel and

at points on the center panel near the stringers would have the effect of

distributing the response over several frequencies in the neighborhood of

60 Hz. These additional natural frequencies could be adjusted by proper

allocation of the mass to the new lumped mass points. The net effect

would be to reduce the single peak at 60 Hz to a group of smaller peaks,

as seen in Figurer 18 and 19 in the frequencies neighboring 60 Hz.

The central portion of the frequency bandwidth from 100 to 400 Hz in

Figures 5, 18, and 19 match very well on both the analytical and experi-

mental curves in that no major peaks are observed on either of the curves

in this frequency range. This type of response is expected since the

lumped mass point is located at the intersection of two stringers, which

is the stiffest point in the central area of the plate. The stringers
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have a tendency to become node lines for all modes of vibration higher

than the second mode and are exactly node lines for the third, sixth,

ninth and twelfth modes of vibration. This tendency has the effect of

allowing this lumped mass point to respond primarily to only the first

and second modes of vibration. This tendency is observed on the curves

in Figures 5, 6, 7, 8, 18, and 19.

Figures 11 and 20 represent the analytical and experimental response

power spectral densities at two points which are not geometrically equiv-

alent, but are located sufficiently close to one another to observe simi-

larities in their power spectral densities. Figure 11 represents the

response power spectral density of lumped mass number 8 (Figure 3) and

Figure 20 represents the response power spectral density of strain gage

16 (Figure 26). The root mean square displacements of the two points in

question are not expected to compare favorably, but the power spectral

densities do show some similarities in natural frequencies between the

two points. Bascially, the same similarities which were observed for the

two previous sets of response power spectral density plots are observed

for this pair of curves. The decreasing power of the response peaks as

the frequency increases is observed for both these curves. The first and

last natural frequencies at 37 and 430 Hz respectively, match very well

on both curves. The magnitudes of these peaks do not match as is expected.

The correlation between the experimental and analytical peaks in the mid-

bank frequencies of 100 to 400 Hz is good, but has the same shift of

analytical frequencies to higher values. The analytical peak of 60 Hz is

again the only major difference in natural frequencies between the two

curves. Although the two response points being discussed are not equiv-

alent points, the same basic similarities noted in their power spectral

densities as observed at the other points already compared indicate that

the entire plate possesses these similarities between the experimental

and analytical results. Figures 9, 10, 11, 12, and 20 support this

observation. Figures 13, 14, 15, and 16, which represent the power spectral

densities of the lumped masses at the corner panels, possess most of the

same characteristics noted in the comparison between Figures 11 and 20,
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and, in general, also support the above observation. Correlated with this

observation is the observation that the modifications suggested to improve

the analytical results would apply over the entire plate.

The modifications needed in the analytical model, as noted above,

would redistribute the mass such that more mass is included near the center

of the plate. This additional mass near the center of the plate is coupled

with a corresponding decrease in the mass at the lumped points near the

fixed boundary of the plate. An increase in the number of lumped mass

points, particularly at the midpoint of the stringers, is also needed.

The entire supporting structure of the plate and horn should be included

in the lumped parameter model of the system.

The effect of these analytical modifications would be to shift the

analytical natural frequencies associated with each peak in the response

power spectral density plots to lower values of frequency. The first and

second natural frequencies would be shifted the greatest amount, and the

highest natural frequency would be shifted the least amount. The overall

level of power associated with the peaks at the higher frequencies would

be increased with respect to the power level at the lower frequencies.

All these effects on the analytical response power spectral density would

tend to make the resulting curves more similar to the experimental curves.

A comparison of the maximum root mean square deflections determined

both analytically and experimentally, is displayed in Table 1. The error

indicated in this table is the percent deviation of the analytical results

obtained by integrating Equation 3-12 from the experimental results.

The error between the experimental results and the results of utilizing

Equation 3-14 is in every case greater than the error shown for Equation

3-12 . The results obtained by using Equation 3-14 are approximately

100 percent greater than the results of Equation 3-12 and do not predict

the experimental results as well as Equation 3-12 . These comparisons

indicate that Equation 3-12 is not a very good approximation to Equation

3-12 for the particular excitation power spectral density shown in

Figure 2. The maximum deviation between the experimental and analytical

(Equation 3-12) amplitudes is only 41.0 percent. Considering the complexity
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of the system.'involved and the fact that by definition a random vibration

defies explicit definition, the 41.0 percent error represents an excellent

analytical prediction. Unfortunately, not enough experimental data points

were recorded to compare with all of the analytical points.

Table 4 lists the fourteen natural frequencies calculated by using

the experimentally measured and the analytically calculated influence

coefficients. The analytical influence coefficients are determined by

approximating the plate with a dense network of beams in which all inter-

sections of beams are made rigid. The experimental influence coefficients

are measured by recording the deflections of the plate due to calibrated

point loads. The two sets of influence coefficients are listed in Tables

2 and 3, but comparing the influence coefficients at each point in the

matrix is not an efficient method of comparison in this case. A better

comparison is to observe the effect these two sets of influence coefficients

have on the results of this problem. The entire effect of the influence

coefficients on this problem is transmitted through the eigenvalues (natural

frequencies) and eigenvectors of the system. The analytical eigenvectors

are altered slightly from the experimental eigenvectors, and the effect

on the eigenvalues is represented in Table 4 by the natural frequencies.

The maximum root mean square values calculated by using the analytical

influence coefficients are altered by a maximum of 6 percent from the

values calculated by using Equation 3-12 and the experimental coefficients.

In most cases, these influence coefficients' root mean square amplitudes

are better approximations to the experimental amplitudes than the ones

given by Equation 3-12 in Table 1. Generally, the influence coefficients

determined by the analytical method described in Section 4 are a good

approximation to the actual values and particularly for the purposes of

this problem produce very good results.
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8. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

A lumped'parameter analysis of a non-homogeneous plate subjected to

a random excitation produced maximum root mean square displacements which

compare very well to the results obtained by experimental tests. Results

from the experimental work when compared to the analytical show a range

of error from 19.1 to 41.0 percent.

The lumped parameter analysis yields its best predictions of the

experimental power spectral densities at the lower frequencies of vibra-

tion. The error of predicting the power level associated with each peak

increases as the frequency increases and ranged from an error of less

than one order of magnitude at the lower frequencies to four orders of

magnitude at 500 Hz.

For the particular excitation utilized in this investigation, inte-

gration of Equation 3-12 with the actual excitation produces values of

maximum root mean square displacements which compare much more favorably

with the experimental results than the results produced by utilizing the

"white noise" approximation of Equation 3-14 and the average value of

the excitation.

The accuracy of predicting the peaks in the response power spectral

densities of the plate in question is strongly dependent on the proper

distribution of mass to the various lumped mass points. The distribution

of mass and the insufficient number of lumped mass points utilized in this

investigation are the major reasons a peak in the response power spectral

density plots at 60 Hz contained an erroneously large amount of power.

An increase in the number of lumped mass points and the proper dis-

tribution of mass to these points will also alleviate the problem of pre-

dicting low power levels at the higher frequencies.

The influence coefficients of the plate can be predicted sufficiently

well for this investigation by representing the plate as a dense network

of beams. The error in predicting the natural frequencies is less than

3.5 percent for the first thirteen natural frequencies.
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The damping ratio can be regarded as a constant with respect to

location on the plate, and as a variable with respect to frequency of

vibration. This is veritied by experimentally measuring the damping ratio

(Figure 21) as both a function of location and frequency.

This method of analysis for non-homogeneous plates has the basic

qualities of simplicity and accuracy, and may be applied to a wide variety

of oddly shaped structures with an ease not found among other methods

of analysis.

Recommendations

The effect of various distributions of mass to the lumped mass points

on the response of plates should be studied. Homogeneous plates subjected

to pure tones could be the first phase and the complexity of this study

increased until it includes non-homogeneous plates subjected to random

excitations. The object of the study would be to determine the optimum

proportions for allocating mass to the lumped points in order to predict

the response accurately. Hopefully, the study will lead to a set of

rules or guidelines which may be used to allocate mass to thellumped points

in any lumped parameter analysis of plates.

After the proper allocation of mass to the different areas of the

plate have been determined, obtain a relationship between the number of

lumped masses used in modeling the plate and the resulting error of the

predicted response. This information would be extremely valuable to

persons trying to make the most efficient lumped parameter analysis of

a plate.

Study the versatility, reliabilityj, and limitations of using a net-

work of beams to approximate the influence coefficients of a variety of

oddly shaped plates.

Study the tendency of the damping ratios for a plate to exhibit a

sinusoidal variation in magnitude as a function of frequency. Part-

icularly, study the behavior of the damping ratios at very low and very

high frequencies.
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APPENDIX A

DETERMINATION OF THE TRANSFORMATION WHICH

UNCOUPLES THE EQUATIONS OF MOTION

The purpose of this appendix is to determine the conditions under

which a damped dynamic system possess classical normal modes. It is

shown that a necessary and sufficient condition for a damped dynamic

system to possess classical normal modes is that the damping matrix be

diagonalized by the same transformation which uncouples the undamped

system. This transformation is accomplished by the normalized eigenvectors

of the system.

In general, the coupled equations of motion for an N degree of free-

dom linear dynamic system with lumped parameters may be written in matrix

notation as:

[m] [g} + E[c] {g + [k] {g= {f(t)} I

where [m], Ic], and [k] are positive definite and symmetric. The homo-

geneous equation is simply,

[m] [~] + [c] [Al + [k] {gl = 0 (A-2)

The undamped homogeneous equation is determined when [c] and {f(t)} are

equal to zero.

[m] [9j + [k] {g] = 0 (A-3)

Let [0] be the transformation which makes [m] a diagonal matrix when

multiplied in this form [e]T [m] [e]. This transformation necessarily

exists because of the symmetry of [m].
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Define

[{g9 REl [{x (A-4)

and substitute into Equation A-2.

[m] J] {[x} + [c] [9Eel { + [k] [9] {x 0 ° 0 (A-5)

Premultiply Equation A-5 by I]T .

[]T [m] [E] {x} + [E] [c] [E ] {}

+ ]elT [k] [9] {x] = O (A-6)

Define

[e]T [m] rE] = [m] a diagonal matrix

[r]T [C] [e = [C] E

[]T [k] r]l = [k] (A-7)

Since Im], Lc], and [k] are positive definite and symmetric matrices,

[m], [c], and Ik] will also be positive definite and symmetric. Sub-

stituting the terms defined in Equation A-7 into Equation A-6 one obtains

[m] [{x + [c] {x * [kl] [{x = O (A-8)

The [m] matrix in Equation A-8 is reduced to the identity matrix by

defining

C{p = [R] {x (A-9)

where

IR] - [I/-] (A-10)
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and substituting in Equation A-8.

[R] [p} + [c] [R]
-1

p + [k] [R] {p} = 0 (A-1l)

Premultiply Equation A-11 by [R]-1

R]
1

[R] £P' + [R]' r] [R]
-

{

+ [R]- [k] [R] {p = O (A-12)

Define

[I] = [R]- [R] Identity matrix

[A] = [R]
- 1 [c] [R]

-
1

[B] = [R]I 1 [k] [R]
'

1 (A-13)

Substitute Equations A-13 into Equation A-12.

[I] ({F + [A] {[} + [B] [p} = O (A-14)

IA] and IB] are positive definite and symmetric matrices and according

to Hildebrand (38) may be diagonalized simultaneously by a single trans-

formation if and only if the two matrices IA] and [B] commute. See

Bellman (39). Let [V] be the transformation such that

[V]T [A] [V] = [a] is a diagonal matrix (A-15)

and

[V]T [B] [V] = [b] is a diagonal matrix (A-16)

Define

{p} = [V] tn (A-17)

and substitute Equation A-17 into Equation A-14.

[V] {n} + [A] [V] {[} + [B] [V] {n] = 0 (A-18)
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Premultiply by [VIT .

[V]T [V] {i} + [V]T [A] [V] [jA

+ [v] [B] [v] {n} = 0(A-19)

Substitute Equations A-15 and A-16 into A-19.

[V]T [V] {n} + [a] {I} + [b] {n} = 0 (A-20)
T tid+ [nJ (A-20)

Equation!A-20 represents the damped uncoupled system if and only if
T

[V] [V] is a diagonal matrix. If [V] is normalized, this requirement

becomes

[VIT [V] = I (A-21)

Equation A-21 restricts the transformation described by Equation A-17 to

be orthogonal.

It is noted that if the above transformations described by Equations

A-4, A-9, and A-17 were applied to the undamped system described by

Equation A-3, the required transformation would be the same as the above

orthogonal transformation. It therefore follows that, if a damped system

possesses classical normal modes, these modes are identical with the normal

modes for the undamped system. The transformation matrix which uncouples

the undamped system is composed of columns which are the eigenvectors of

the system. The eigenvectors of the undamped system are, therefore, the

proper transformation for uncoupling the equations of motion for the

damped system described above.
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APPENDIX B

INTEGRATION OF THE TRANSFER FUNCTION

SQUARED BY THE THEOREM OF RESIDUES

The transfer function (H) squared is defined as

JH(w) j12 (B-l) I1

[ (·oz _ ®2)2+ (2 o )21

where
g = damping ratio

w = frequency

w = natural frequency

M = mass

The integral

by the theorem of

(I) of this function from --

residues. See James (15).

to +- will be determined

I = \

I = -
w0:

(B-2)JH(w) 12 dw

dw

M2 [(0 2 _ w2)2 + (2 gm o ) 2 ]

(B-3) I

The integrand of Equation B-'3 which is a function of the real vari-

able tw is treated as a function of the complex variable z. The complex

function f (z) is defined to be

f(z) =
1

(B-4)
M2 [(2

0
w Z2)2 + (2 i )2 ]

The complex function described by Equation B-4 has two simple poles

in the upper half complex plane and are determined by solving for the

zeroes of the expression enclosed by brackets in Equation B-4. These
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poles are found to-be.

z 1 = 1- 7

z2

W 0 + itw0

wo + igwoo

The integral (I) of Equation B-3 is given by the theorem to be

I = 2 rr i { The sum of the residues of f(z) in the upper I

complex plane}

The residues R
1

and R
2

in the upper complex plane are determined by

R=(zz1 )
2f()l 

=z 

R = (z - z1 ) If (z) lz = 

2 = (z - z2 ) If lz = z2 

Equation B-6 can be represented as

I = 2 T i (R1 + R2)

I = 2 TT i
M2

-_/l /1 g2 i _ wo

f'

___ ___ _ z +j1 2 W W' W o -iw
°

w2 _ ( 1 w+igw + [2gw (-J1- 2 Wo+iwo j]2

Equation B-10 is reduced to

M2 i

wod
wo4ig

(B-5) I

(B-7)

(B-8)

(B-9) I

wuo+igUo )j2

(B-10)(B-lO)J
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Equation B-ll represents the integral of the transfer function squared

from -I to +o.

5l H () = 2 3 r (B-12)
-CO 2M2 o

For the purpose of practical application the range of integration is

reduced to 0 to -. Since the integrand of Equation B-12 is an even

function the integral may be represented by

5~ H2 () 2 2 H (W) = 3 (B-13)

thus

o H2 (c ) = 

M20 4 o ~933 3
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APPENDIX D

SAMPLE CALIBRATION CALCULATION

Calculation of Constant A:

R Rp
AR R R G 
5 G RG+RP

AR5

AR5 =

= 120.8 -
120.8 (50,000)
120.8 + 50,000

120.8 = 120.51

AR5 = .29

AR .29 - .07
V 1.051 - .254

= 22 - .276
.797

AR .27 - .07 .22
V 1.056 - .-246 .810 2715

AR .29 - .07 .22
- - - .273

V 1.041 - .2335 .807

A = V I average = (.276 + .2715 + .273) /3 = .274

Calculation of Constant B:

B ..00418
RF 120.8 (1.98)

Calculation of Constant C:

From mass number one, L = 20 pounds force,

111



t = 10,000 - 9,876 = 124 x 10- 6 (in/in)

L 20 6
C =- = 0 .1538 x 10

t 124 x 10 6

From mass number two, L = 20 pounds force,

t = 10,000- 9,859 = 141 x 10 6 (in/in)

L 20 = .142 x 106

t 141 x 10- 6

From mass number three, L = 20 pounds force,

t = 5,000 - 4,8563= 144 x 10- 6 (in/in)

L 20
C=L =20 = .14 x 10144 x 10- 6

C average = (.14 + .142 + .1538) x 106/3 = .144 x 106

A x B x C = .274 x .00418 x .144 x 10 = 165.5
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